



### Wednesday August 10th

- Writing what would life be like without the battery?
- Engineering Careers
- In groups of two Powerpoint Project
  □ Graded based on handout
  □ Will present to class
- Test on Friday on Careers in Engineering

### F

#### **Essential Questions**

- What are the different engineering disciplines?
- What is the occupational outlook and expected salary of engineers?





#### Engineers are constantly evolving



- Some disciplines have become extinct because of society's changing needs
- As we progress through this new millennium it is inevitable that new engineering disciplines will develop and more will fall to the wayside

#### Ħ

#### Acoustical Engineering

Plan, perfect, or improve the sound of an architectural space

- Deals with 2 basic properties of sound: reflection and absorption
- Investigate how different noises and background sounds affect productivity in a building
- Sets the mood of a structure's environment by deciding what it will sound like
- Work on an architectural space can range anywhere from examining the innumerable surfaces in a church to drawing CAD plans for a subwoofer enclosure
- HVAC or air conditioning systems are the hardest sounds to eliminate in large, high-productivity office spaces
- Acoustical engineers are in high demand, but there are very few of them

#### ₩,

### **Automotive Engineering**

Plan, coordinate, and implement the specifications for a new car, engineering every part

- Design and draw automotive parts
- Combine the automotive parts into components
- Integrate the components into the car's systems
- Make the mechanical aspects of the car fit into the aesthetic design
- Emissions laws, cost of materials and development, performance requirements, and consumer demands create challenges
- Requires a degree in engineering, interpersonal and communication skills, ability to multitask, technical knowledge, and design experience

# Aerospace Engineering

Design, develop, test, and help manufacture aircraft, missiles, and spacecraft

- Develop new technologies for military and commercial use
- Can be divided into 2 fields:
  - □ Aeronautical engineering: works will aircrafts □ Astronautical engineering: works with spacecrafts
- Can specialize in many fields, ranging from propulsion to thermodynamics
- Requires an engineering-related degree from a 2- or 4-year college, completion of a formal training program, and licensing or examination

### Agricultural Engineering

Concerned with the production and processing of agricultural products, which are critical to our ability to feed the ever-expanding world population

- Can specialize in many fields:
  - □ Power machinery
  - □ Bioengineering
  - □ Soils and water□ Electrical technologies
  - □ Food processing
- An example of an agricultural engineer's work is designing and implementing an irrigation system for crop production





#### Bioengineering

The application of engineering principles to biological systems

- Encompasses many fields of study, including chemistry, physics, technology, and medicine
- One of the newest and fastest growing disciplines
- Applies the fundamentals of engineering to meet the needs of the medical community
- Requires an undergraduate, and often graduate, degree in bioengineering
- Examples of their work:
  - ☐ Genetically modifying a plant or animal to produce a disease-resistant strain
  - □ Developing the chemical process necessary to make an artificial kidney function

#### Chemical Engineering

Take what chemists do in a laboratory, apply fundamental engineering, chemistry, and physics principles, and design and develop processes to produce products for use in our society

- Solve problems that involve the production and use of chemicals
- Focuses on chemistry and the chemical nature of products and processes, unlike other disciplines
- Design of large-scale chemical production facilities is the most common employment
- Must develop processes that minimize harmful waste since many chemicals and their byproducts are dangerous to people and the environment
- Requires a Bachelor's degree and strong math, science skills, and computer skills

# Civ

### Civil Engineering

Designing and supervising the construction of roads, buildings, airports, tunnels, bridges, and water and sewage systems

- Main objective: design systems that are functional, efficient, durable, and minimize harm on the environment
- Affected by population shifts, urban planning and renewal efforts, zoning laws, and building codes
- Structural engineers are the most common type of civil engineers. They are concerned with the integrity of the structure of buildings, highways, and bridges
- Other types of civil engineers are transportation engineers, surveyors, urban planning engineers, and construction engineers



#### Computer Engineering

Design and build computer-related hardware products for many applications, such as personal computers, cell phones, automobiles, and even washing machines

- Apply the theories of science and mathematics to design hardware, software, networks, computer chips, and processors
- Often work in teams
- One of the fastest growing disciplines
- Difference between computer science:
  - Computer scientists focus on software and its optimization
- Computer engineers focus on computer hardware or the machine itself
- Security is becoming a huge concern of computer engineers



# Construction Engineering

Concerned with the management and operation of construction projects



- Interested in improving construction methods and materials to make them safer, more reliable, cost effective, and environmentally friendly
- Incorporate technical, financial, and legal requirements into a plan to meet project deadlines
- Requires project management skills and knowledge of computer tools

### **Electrical Engineering**

Responsible for the design, development, testing, and supervision of the manufacturing of electrical equipment, such as household appliances or guidance systems for satellites

- Work with all products and systems that use electricity
- Concerned with making their designs efficient, long lasting, cost-effective, and safe
- The most populated and traditional of the engineering disciplines
- Can be divided into 8 areas:

Computers Circuits and solid waste devices

Signal Processing

Control Instrumentation Bioengineering

Power

Communications

# Environmental Engineering

Apply engineering principles in order to improve and maintain the environment



- Uses science to make the world a safer place for humans and animals
- 3 components of environmental engineering:
  - ☐ Disposal disposing industrial and residential
  - □ Remediation cleaning a contaminated site
  - □ Prevention reducing or eliminating the amount of waste from the manufacturing
- Requires knowledge of engineering fundamentals and environmental laws and regulations

### Fire Protection Engineering

Design fire sprinkler, alarm, and exit systems, as well as aid in the investigation of fires and explosions

- Analyze risk of major facilities and consult with architects on large projects
- Can work in private or public sector for consulting firms, petrochemical societies, federal agencies, insurance companies, and in health care industries



### Food Process Engineering

Concerned with providing healthier products to consumers, who increasingly rely on food products



- Involved in the efficient and safe processing and delivery of food products
- Design processing, handling, and packaging equipment for the food industry
- Can work in food, chemical, and pharmaceutical industries

### Genetic Engineering

Use science to research genes found in the cells of plants and animals to develop better products

- Demand is growing
- Surrounded by complicated political, economic, and moral conflicts
- Specializing in the study of a disease and its affects on humans is a common focus
- Must follow rigid safety measures and work with dangerous chemicals, electron microscopes, and gene guns to carry out research
- Can be divided into 4 categories: human, animal, plant, and microorganism



### Geological Engineering

Use science to work with land and water



- Range of tasks vary due to the ever-growing and changing field
- Investigate sites of major land-related projects, such as bridges or tunnels
- Mitigate toxic waste and land contamination
- Use physics to predict the flow of water
- Build and maintain earth-related power sources, such as hydroelectric plants
- Requires a graduate degree

### Industrial Engineering

Design, improve, and install integrated systems of people, materials, and energy

- Involves the integration of technology, mathematical models, and management practices
- Traditionally work on a factory floor, but skills can be applied to many other applications and industries
- Focus on 4 main areas:
  - <u>Production</u> is concerned with optimizing product production by reducing cost and production time, and increasing quality and reliability
  - ☐ <u>Manufacturing</u> addresses the concerns of each individual station in the production process and optimizes the actual material processing
  - ☐ The <u>human factors</u> area studies the interfaces between people, machines, and objects
  - □ <u>Operations</u> research involves mathematically modeling systems to identify ways to improve them

#### Manufacturing Engineering

Applies science and math to the design, development, and implementation of manufacturing systems (i.e. they produce goods)

- Often involves the supervision of skilled craftsmen
- Make decisions about technology, machinery, people, and money to produce high-quality goods at affordable prices
- Often work in teams to launch new products
- Partner with design engineers, marketing specialists, supply chain managers, human resources, and accountants
- Must know how to use resources, including machines, robots, people, computer-based tools, information networks, and money
- Work at the core of industrial companies and can therefore easily advance into management and executive positions

#### Marine and Ocean Engineering

Concerned with the exploration of oceans, the transportation of products over water, and the utilization of resources in the world's oceans, lakes, and seas

- Design and operate ships, boats, and submarines, especially their propulsion, navigation, and steering systems
- Design underwater pipelines, offshore drilling platforms, and offshore harbor facilities
- Study wave action and design ways to reduce erosion while protecting marine life
- Control and treat pollution in the ocean and find alternative sources of energy from the



### Materials Science Engineering

Develop new materials, improve traditional materials, and produce materials that are economical and reliable through synthesis and processing

- Concerned with 4 components of materials:
  - □ Structure study the molecular bonding and chemical composition of materials
  - □ Properties optimize the strength, crack growth rates, hardness, and durability of materials
  - □ Processes different processes of creating materials give materials different properties, so materials engineers design processes that give each material its desired properties
  - □ Performance ensure that a material meets its performance demands by designing test procedures that make sure these requirements are met
- Work with materials such as metals, ceramics, plastics, and composites

#### Mechanical Engineering

Design, produce, operate, and service machines and mechanical devices

- Second largest engineering discipline after electrical engineering
- Often involved in automating time-consuming or expensive procedures
- Composed of 2 main divisions:
  - 1) Design and controls is concerned with:
    - The strength of machine parts and the stress that each part will be subjected to
    - Developing tools that help the design engineer design a machine
    - Controlling machines through mechanical, hydraulic, and digital controls
  - Minimizing the unwanted noise of a machine 2) Thermal science is concerned with:
  - The flow of fluids and energy between systems
    - Study and predict the temperature of machines parts, and design cooling devices for them
    - Heating, ventilating, and air conditioning of buildings
    - Performance and efficiency of large power generation plants, and developing alternative energy sources

# Mineral and Mining Engineering

Maintain the flow of raw materials by discovering, extracting, and processing minerals for products



- Explore land, the ocean floor, the earth's core, and asteroids for ore and mineral
- Design mining tunnels, open pit mines, and blasting techniques while keeping the environmental impact to a minimum
- Purify and separate minerals through chemical and mechanical processes
- Design safer equipment for the dangerous mining industry
- Use mining knowledge to create subways systems and railroad tunnels



#### **Nuclear Engineering**

Study nuclear energy, radiation, and their beneficial uses

- Work in nuclear plants to design and operate
- Responsible for the production of nuclear fuel and safe disposal of radioactive waste
- Integrate nuclear power in the propulsion systems of ships, submarines, rockets, and satellites, which allows them to go years without refueling
- Find ways to use radiation to improve the medical and agricultural fields.
- Requires the ability to shift work to meet production schedules, identify hazards, and weigh risks and benefits constantly



#### Petroleum Engineering

Concerned with maintaining the safe flow of petroleum, exploring for crude oil deposits, removing and transporting oil, and refining oil



- Use satellite and geological information to locate gas and oil deposits
- Design and operate oil drilling equipment and facilities, both on land or on offshore
- Extract oil safely and in a way that minimally harms the environment
- Design and operate the chemical process of refining petroleum into other products, like gasoline, motor oil, lubricants, and plastics



#### Robotics and Automated Systems Engineering

Concerned with programming robots and systems to perform tasks autonomously

- One of the newest and most exciting disciplines
- Design more efficient and skilled robots to assemble complex products and operate spacecrafts
- Requires competency in many programming languages and UNIX operating systems, as well as the ability to work in a team and communicate effectively
- Requires a Bachelor's degree in chemical engineering, computer science, or chemistry for entry-level jobs
- Requires a Master's or Doctorate degree to become a senior engineer or executive

#### Software Engineering

Responsible for the coding of computer software that results in a simple and friendly environment for computer users

- Can create programs for internal office use or coordinate technical systems and growth within a company
- One of the fastest growing professions in the United States
- Unlike many other engineers, software engineers work in a large office setting
- Requires a Bachelor's degree in a computer or technology related field, broad knowledge of computers and technology, and certification of fluency in certain programs



#### Structural Engineering

Create safer structures and fit more people and objects per square inch into these structures

- Analyze and design almost any structure imaginable, such as skyscrapers, bridges, tunnels, canals, and space platforms
- Determine:
  - ☐ The best structural system
  - ☐ The sizes of columns, beams, walls, staircases, and foundations
  - $\hfill\Box$  The type of reinforcement that each element requires
- Prepare detailed structural sketches in accordance with standard specifications
- Must design structures to withstand their own weight, plus natural forces such as gravity, wind, and earthquakes

# Occupational Outlook



- Expected to grow as fast as the average for all occupations over the next decade (about 11%)
- Growth will vary by specialty
- Environmental and Civil engineers should experience the largest growth
- Technological advances will not to limit employment in engineering, like in other occupations, because engineers continue to develop new products and systems
- Offshoring of engineering work will slow domestic employment growth because foreign engineers are willing to work for lower salaries
- Engineers work on long-term research and development projects so they are less affected by economic slowdowns
- Engineers must continue their education throughout their careers since much of their value depends on their knowledge of the latest technology

# Salary Information

| Curriculum                                | Bachelor's | Master's | Ph.D.    |
|-------------------------------------------|------------|----------|----------|
| Aerospace/aeronautical/astronautical      | \$53,408   | \$62,459 | \$73,814 |
| Agricultural                              | 49,764     |          |          |
| Architectural                             | 48,664     |          |          |
| Bioengineering and biomedical             | 51,356     | 59,240   |          |
| Chemical                                  | 59,361     | 68,561   | 73,66    |
| Civil                                     | 48,509     | 48,280   | 62,27    |
| Computer                                  | 56,201     | 60,000   | 92,50    |
| Electrical/electronics and communications | 55,292     | 66,309   | 75,98    |
| Environmental/environmental health        | 47,960     |          |          |
| Industrial/manufacturing                  | 55,067     | 64,759   | 77,36    |
| Materials                                 | 56,233     |          |          |
| Mechanical                                | 54,128     | 62,798   | 72,76    |
| Mining and mineral                        | 54,381     |          |          |
| Nuclear                                   | 56,587     | 59,167   |          |
| Petroleum                                 | 60.718     | 57,000   |          |

\* Data comes from the Bureau of Labor Statistics' Occupational Outlook Handbook, 200



# **Essential Questions**

- What are the different engineering disciplines?
- What is the occupational outlook and expected salary of engineers?

